Conic sections and intro to 3 D and vectors

Questions

Question 1. What does the equation $y^{2}=4$ describe in \mathbb{R}^{2} ? What about \mathbb{R}^{3} ?
Question 2. If $\mathbf{r}=\langle x, y\rangle, \mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$, and $\mathbf{b}=\left\langle b_{1}, b_{2}\right\rangle$ (where $a_{1}, a_{2}, b_{1}, b_{2}$ are constants), expand out the equation

$$
(\mathbf{r}-\mathbf{a}) \cdot(\mathbf{r}-\mathbf{b})=0
$$

and say what kind of shape it is.
Question 3. Can you express the magnitude (length) of a vector \mathbf{v} in terms of the scalar (dot) product?
Question 4. Do the surfaces defined by the equations

$$
x^{2}+y^{2}+(z-1)^{2}=25
$$

and

$$
x^{2}+y^{2}+z^{2}=9
$$

intersect?
Question 5. Suppose that H_{1} and H_{2} are two planes in \mathbb{R}^{3} (3-dimensional space). Which of the following might be the intersection $H_{1} \cap H_{2}$? There are multiple correct answers.
(a) A plane.
(b) A line.
(c) A point.
(d) Empty (the planes don't intersect).

Question 6. Identify the following shapes in \mathbb{R}^{2}. Just a simple verbal description is fine.
(a) $4 x^{2}-12 x-9 y^{2}-6 y+7=0$
(b) $4 x^{2}-12 x-9 y^{2}-6 y+8=0$
(c) $4 x^{2}-12 x-9 y^{2}-6 y+9=0$

Question 7. Consider the line L with parametric equations

$$
x=3+3 t, \quad y=2-t, \quad z=5 t
$$

and the point $P(1,-2,2)$. Find the point Q on the line L which minimizes the distance $|P Q|$, and say what this minimum distance is.

